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a  b  s  t  r  a  c  t

Using  computational  fluid  dynamics  (CFD),  the  effective  B-term  diffusion  constant  �eff has  been  calcu-
lated  for  four  different  random  sphere  packings  with  different  particle  size  distributions  and  packing
geometries.  Both  fully  porous  and  porous-shell  sphere  packings  are  considered.  The  obtained  �eff-values
have  subsequently  been  used  to determine  the  value  of  the  three-point  geometrical  constant  (�2)  appear-
ing in  the  2nd-order  accurate  effective  medium  theory  expression  for �eff.  It  was  found  that,  whereas
the  1st-order  accurate  effective  medium  theory  expression  is accurate  to within  5%  over  most  part  of  the
retention  factor  range,  the  2nd-order  accurate  expression  is  accurate  to within  1%  when  calculated  with
eywords:
-term
ongitudinal diffusion
eak parking
ffective medium theory
hree-point Parameter

the best-fit  �2-value.  Depending  on  the  exact  microscopic  geometry,  the  best-fit  �2-values  typically  lie
in  the  range  of  0.20–0.30,  holding  over the  entire  range  of  intra-particle  diffusion  coefficients  typically
encountered  for small  molecules  (0.1  ≤ Dpz/Dm ≤  0.5).  These  values  are  in agreement  with  the  �2-value
proposed  by  Thovert  et  al. for the  random  packing  they  considered  [1].

© 2011 Elsevier B.V. All rights reserved.

andom sphere packing

. Introduction

The recently reported improvements in separation efficiency
hat can be obtained using porous-shell particles instead of fully
orous particles [2–6] renews the interest in an accurate modeling
f the B-term contribution to the band broadening in chromato-
raphic columns. In a previous paper [7],  our group has established
ffective medium theory [8–10] based expressions for the B-term
iffusion in ordered sphere and cylinder packings, as well as in
isordered cylinder packings. These are given by:

 = 2�eff (1 + k′) (1)

eff = 1
εT (1 + k′)

1 + 2ˇ1(1 − εe)
1 − ˇ1(1 − εe)

(2)

eff = 1
εT (1 + k′)

1 + 2ˇ1(1 − εe) − εeς2ˇ2
1

1 + ˇ1(1 − εe) − εeς2ˇ2
1

(3)
1 = ˛part − 1
˛part + 2

(4)

∗ Corresponding author. Tel.: +32 2 629 32 51; fax: +32 2 629 32 48.
E-mail address: gedesmet@vub.ac.be (G. Desmet).

021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2011.12.004
˛part = εek
′′

1 − εe

Dpart

Dm
= (1 + k′)εT − εe

1 − εe

Dpart

Dm
(5)

In these equations, B is the longitudinal diffusion coefficient
appearing in the B-term of the reduced plate height equation
(hB = B/�0), �eff is the effective B-term diffusion constant, k′ the
phase retention factor, k′′ the zone retention factor (related to the
t0-based retention factor k′ via k′′ = (1 + k′)(εT/εe) − 1), εT the total
porosity, εe the external porosity, �2 the three-point parameter,
ˇ1 the polarizability constant, ˛part the relative particle permeabil-
ity and Dpart and Dm the diffusion coefficient in the particles and
mobile zone respectively.

These expressions were subsequently tested [11] for their ability
to predict the effective diffusion coefficient in a variety of packing
geometries with exact known intra- and inter-particle diffusion
coefficients. For each geometry a wide range of different reten-
tion factors was  considered, and the agreement was always very
good. In most cases, the 1st-order approximation (Eq. (2))  was
already accurate enough to approximate the true values within a
few %. The excellent agreement also validated the adopted numer-
ical calculation procedures. The study was  however mostly limited
to ordered spheres packings, and to packings where the spheres

did not touch. The latter was  due to the fact that the considered
ordered sphere packings had an external porosity representative
of those encountered in random packed bed columns (where typ-
ically εe = 0.36–0.40 [12]). Ordered packings with a face centered

dx.doi.org/10.1016/j.chroma.2011.12.004
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:gedesmet@vub.ac.be
dx.doi.org/10.1016/j.chroma.2011.12.004
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ubic or a body centered cubic arrangement however only reach
heir closest packed limit at resp. εe = 0.26 and εe = 0.32, so that the
onsidered cases corresponded to a geometry where the spheres
ere “hanging” in space. This approach was justified because it was

ound that the effective diffusion was much more dependent on the
alue of the external porosity than on the actual sphere arrange-
ent, so that it was more important to consider geometries with

he correct external porosity than with the correct sphere position.
In the present paper, additional computational power was

nvoked to calculate the effective diffusion in more elaborate struc-
ures such as random sphere packings (i.e., with touching spheres).
oth fully porous as well as porous-shell particles are considered.
he main aim of the calculations was to investigate how well Eqs.
2) and (3) can predict the effective diffusion in these more com-
lex cases. In the particular case of Eq. (3),  the calculations are also
sed to determine the value of the three-point geometrical param-
ter (�2) appearing in it. This was done for all different considered
eometries.

. Numerical methods and considered geometries

Fig. 1a–d represents the different considered random sphere
ackings. Each of the structures was first considered to consist of
ully porous particles. Subsequently, also a series of porous-shell
ariants was considered. To characterize the thickness of the layer,
he relative ratio (�) of the core diameter over the total diameter is
eing used, as is customary in the literature on porous-shell mate-
ials [2,5]. In the present study, the value of � = 0.63 was attributed
o all porous-shell spheres, as this is a typical value found in the
iterature [13].
The first random sphere packing (Random I) was  obtained
y selecting 27 sphere diameters in such a way that the sphere
iameters were distributed normally with a relative standard devi-
tion � = 0.13 (= standard deviation divided by the average sphere

Fig. 1. (a–d) Unit cell containing randomly stacked spheres: (a) R
togr. A 1223 (2012) 35– 40

diameter), as an example of a commercial packing with a relatively
broad PSD [14]. The spheres were subsequently randomly stacked
such the resulting packing assumed an external porosity of 0.384
and fitted in a unit cell with a hexagonal cross-section, and with
periodic boundaries (except for the top and bottom). The periodic-
ity implies that an infinite space can be filled by stacking these unit
cells, and that perfect spheres are created from the partial spheres
on the periodic boundaries. The second random sphere packing
(Random II) was  obtained by randomly picking 29 spheres from
a large batch of spheres with normally distributed diameters with
a relative standard deviation of � = 0.13. The spheres were subse-
quently randomly stacked such the resulting packing assumed an
external porosity of 0.387 and fitted in a unit cell with a hexag-
onal cross-section, and with periodic boundaries (except for the
top and bottom). The third random sphere packing was  obtained
by stacking 25 equally sized spheres in a unit cell with a square
cross-section, and with periodic boundaries, in such a way that the
resulting packing assumed an external porosity of 0.387. Finally, a
fourth packing (Random IV) was generated using a numerical pack-
ing simulator (Macropac, Intelligensys [15]). This packing consisted
out of 91 uniform spheres, and had a porosity of 0.387. Similar to
the Random III-packing, it also had a square cross-section.

It was opted to consider packings with a similar external poros-
ity (ε = 0.385), to rule out any effects induced by variations in
packing density. The value of ε = 0.385 was selected as this lies near
the average of the 0.36–0.4 range that is generally observed. [12,16].

To further characterize the packings, the average packing coor-
dination number has been calculated according to the definition
given in [17]. Random I and II have coordination number around
6 (resp.5.9 and 5.7), while Random III and IV have coordination

number around 8 (resp. 8.2 and 8.1).

The effective diffusion in these packings has been numer-
ically computed using the type peak parking simulations
presented in [11]. The computational domains were meshed using

andom I, (b) Random II, (c) Random III and (d) Random IV.
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Fig. 2. Variation of �eff as a function of k′′ for Random I (�), Random II (�), Random
III  (�), Random IV (*) and porous-shell Random I ( ) and II ( ) as calculated from
the  simulation results and as calculated with: Eq. (2) ( ), Eq. (3) with the best-fit
�2-values for Random I, II, III and IV ( ) and Eq. (3) with the best-fit �2-value for
Random I and II in combination with Eq. (6) ( ). (Porous-shell Random III and IV
gave analogous results, data not shown) (a) Dpz/Dm = 0.5 and (b) Dpz/Dm = 0.1. The
secondary axis (k′-axis) applies to the fully porous cases.

Table 1
Values of the 3-point parameter constant appearing in Eq. (3).

Geometry
(random)

�2 Geometry (perf. ordered)a �2

Random I
(εe = 0.384)

0.20 Simple cubic (εe = 0.386) 0.44

Random II
(εe = 0.387)

0.24 Body centered cubic (εe = 0.386) 0.091

Random III
(εe = 0.387)

0.29 Face centered cubic (εe = 0.386) 0.071

Random IV
(εe = 0.387)

0.27

Random
(taken from
ref. [1],
ε = 0.386)

0.31
S. Deridder, G. Desmet / J. C

,500,000–4,000,000 tetrahedral cells. The maximum cell skew-
ess never exceeded 0.90 and the average cell skewness was 0.2.
rid checks with half the amount of computational cells resulted

n a maximum change of �eff of 0.11%. Periodic boundary con-
itions were applied to all boundaries, except for the top and
ottom, for which constant zero-concentration conditions were
pplied. The mobile phase was given the properties of water and
he meso-porous zone (either the fully porous particle or only
he porous-shell layer) was attributed an internal porosity of 0.35
as this is a typical literature value [18]). In the middle between
op and bottom boundaries and parallel to them, a small region
with thickness of 7% of the average particle diameter) extending
o the periodic boundaries of the flow domain was filled with a
racer liquid having the same physicochemical properties as the
est of the mobile phase. The tracer was attributed a diffusion
oefficient Dm in the mobile zone and Dpz in the meso-porous
one in the particles. The tracer species was also subjected to a
pecies equilibrium by means of a reversible chemical reaction that
ransforms the freely diffusing species A into a retained species
* via a forward and backward reaction rate combining into a
iven equilibrium constant KA,pz [19]. A fixed time stepping method
as chosen to subsequently solve the diffusion equation using an

mplicit, segregated solution scheme with a second order implicit
nsteady formulation. The resulting concentration field, which is

 function of the time, was used to calculate �eff as described
n [11].

For the sphere packings, two different values of the porous-
one diffusion coefficient were considered: one that is slightly
igher than the highest Dpz-values observed [19] in state-of-the-
rt porous particles (Dpz = 0.5·Dm), and one (Dpz = 0.1·Dm) that is
lightly smaller than the lower limit Dpz-value encountered in the
ame structures.

. Results and discussion

Fig. 2a shows the computed �eff-values for the four considered
andom sphere packings represented in Fig. 1a–d (Dpz = 0.5·Dm-
ase), together with their best fit according to the Torquato-based
xpression (Eq. (3)), as well as the curve representing the more
rude Maxwell-based expression (Eq. (2)). The latter is represented
y the red curve. As can be noted, the four random cases lead to
ery similar �eff-values in the range of 2 < k′′ < 6 (see double x-axis
o read out corresponding value of k′). The exact microscopic struc-
ure of the bed only becomes apparent for either very small or
or large k′′-values, where the respective �eff-curves clearly devi-
te from each other, albeit by no more than a few %. In these two
anges, the �eff-values can clearly also no longer be perfectly pre-
icted by the simple Eq. (2).  The higher order approximation (Eq.
3)), with a properly adapted �2-constant depending on the exact

icroscopic geometry of the packing, clearly provides a much more
ccurate prediction. In the present study, the values of �2 have
een determined via a least-square fit of Eq. (3) to the computed
FD-data. The obtained values are given in Table 1. As a refer-
nce, the exact �2-values that were determined by McPhedran and
ilton [20] for the case of a perfectly ordered simple cubic (sc),

ace centered cubic (fcc) and body centered cubic (bcc) packing are
iven as well. As can be noted, the fitting is less accurate in the
arge k′′-range. The origin of this poorer fit is discussed further on,
n Figs. 3 and 4.

One of the virtues of the effective medium theory is that it also
rovides an elegant way to account for the presence of a solid core
n a very simple way. This follows from the Hashin and Shtrikman-
heory, according to which the Dpart-value needed in Eq. (5) can be
imply calculated by starting from the diffusion coefficient (Dpz) in
he meso-porous zone of the particle (entire particle in case of fully
e

a Values taken from ref. [20]

porous particle or porous-shell layer in case of porous-shell parti-
cle) and multiply it with a fraction containing the dimensionless
core diameter � (� = dcore/dp):
Dpart = 2
2 + �3

Dpz (6)
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Fig. 3. Variation of �eff/�eff, fcc (�eff divided by �eff predicted by Eq. (3) for the case
of  an fcc packing) as a function of k′′ for Random I (�), Random II (�), Random III (�)
and Random IV (*) as calculated from the simulation results and as calculated with:
Eq.  (2) ( ), Eq. (3) ( ) with �2 as predicted in [20] for an fcc-, bcc- and sc-packing
and  Eq. (3) with the best-fit � -values for Random I, II and III ( ). (a) D /D = 0.5
a

r
s
w
p
fi
T
t
f
m
f
b
t
a

a
p
b
n
t
i
t

Fig. 4. Variation of �eff/�eff, fcc (�eff divided by �eff predicted by Eq. (3) for the case
of  an fcc packing) as a function of k′′ for Random I and Random I (�) with blocked
diffusion through the particle contact zones ( ) as calculated from the simulation
results and as calculated with: Eq. (2) ( ), Eq. (3) with �2 as predicted in [20] for

′′
2 pz m

nd  (b) Dpz/Dm = 0.1. The secondary axis (k′-axis) applies to the fully porous cases.

When � = 0 (fully porous particle), Eq. (6) returns the trivial
esult that Dpart = Dpz. When � = 0.63 (presently considered porous-
hell case), Eq. (6) returns Dpart = 0.89·Dpz. Using the latter value,
hile keeping the same �2-value as obtained by fitting the fully
orous particle case, the resulting �eff-model curves can clearly
t the �eff-values computed for the porous-shell particle packings.
his holds for both the Dpz/Dm = 0.5-case in Fig. 2a, as well as for
he Dpz/Dm = 0.1-case represented in Fig. 2b. In the latter case, the
our different random cases produce �eff-values that seem to fall

uch closer to each other. This holds as well for the fully porous as
or the porous-shell case. This is essentially a visual effect, caused
y the steeper decrease of the �eff-values, as a detailed zoom-in of
he data (see Fig. 3 further on) shows that both Dpz/Dm-cases have

 similar fitting accuracy.
In both the Dpz/Dm = 0.5 and the Dpz/Dm = 0.1-case, there is

lways a range of k′′-values where �eff is insensitive to the actual
acking geometry. An explanation for this observation has already
een given in [7] for the case of ordered sphere packings and can

ow be generalized to any kind of packing. The observed insensi-
ivity to the actual packing geometry in a given range of k′′-values
s due to the fact that, for that range of retention factors, the effec-
ive permeability of the particles (whose effective permeability is
an  fcc – packing ( ) and Eq. (3) with the best-fit �2-values for Random I ( ). (a)
Dpz/Dm = 0.5 and (b) Dpz/Dm = 0.1 Inset: Two spheres with a blocked contact region
(dark).

proportional to the product of internal diffusion coefficient and the
particle-based retention factor) is of the same order as the perme-
ability of the surrounding mobile phase liquid. As a consequence, it
becomes irrelevant whether the species are diffusing through the
particles or through the surrounding mobile phase, and the effec-
tive diffusion becomes insensitive to the geometrical arrangement
of both zones. Mathematically, this is expressed by the fact that the
relative permeability of the particle zone (represented by the rel-
ative permeability ˛part, see Eq. (4))  becomes unity. This leads to
the following expression for the critical zone and phase retention
factor:

k′′
iso = 1 − εe

εe

Dm

Dpart
(7)
For the case of Dpz/Dm = 0.5, the critical k -value for the fully
porous particle case predicted by Eq. (7) is given by k′′

iso = 3.18. This
value indeed lies exactly in the range where the �eff-curves corre-
sponding to the different geometries all perfectly coincide. This is
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ore clearly observed in Fig. 3, where the differences between the
ifferent �eff-curves are magnified by switching to a representa-
ion where the absolute �eff-values are divided by the �eff-values
redicted by Eq. (4) in case of an fcc-packing (represented by the
lack, solid line).

When the intra-particle diffusion is smaller (cf. the Dpz/Dm = 0.1-
ase represented in Figs. 2b and 3b), the range where the geometry
as nearly no effect on �eff shifts to higher values as k′′

iso increases
ith a factor 5 compared to the Dpz/Dm = 0.5-case. In addition, the

ange of small k′′-values where the microscopic detail of the packing
as a significant effect on �eff is proportionally elongated, so that
ow the more simple Eq. (2) is clearly less accurate than the higher
rder Torquato-based variant (Eq. (3))  in the k′′-region between

 and 5 (or equivalently 0 < k′ < 3). Above k′′ = 5, the effect of the
icroscopic structure of the bed on �eff again vanishes and the �eff-

urves of the different considered geometries can all be perfectly
redicted using the more simple Eq. (2).

Since a random packing can be conceived as a combination of
he three basic ordered packing variants (sc, fcc and bcc), it is in
ull agreement with one’s physical expectations to observe that
he data for the four random packing cases represented in Fig. 3
ie within the range formed between the full line curve represent-
ng the pure sc-packing and the two full line curves representing
he pure fcc- and bcc-packings. This is further confirmed by the
act that the best-fit �2-values for the considered random sphere
ackings lie in the range formed between the pure sc-packing
�2 = 0.44) and the pure fcc- and bcc-packing (resp. �2 = 0.071 and
2 = 0.091). The best-fit �2-values for the random sphere packings
n the present study also lie close to the �2-value of 0.31 proposed
y Thovert et al. [1] for the random sphere packing they consid-
red (see also Table 1). Obviously, the difference between the latter
alue and the values obtained in the present study is due to the fact
hat the result in [1] relates to a random packing with a different
eometry.

Considering Random I and II have very similar properties (coor-
ination number around 6 and packed with particles with a particle
ize distribution with � = 0.13), while Random III and IV have differ-
nt, but mutually also very similar properties (coordination number
round 8 and with � = 0), it is interesting to observe from Fig. 3a and

 that the difference between the members of the same pair can be
s large as the difference between the pairs (see right hand side of
′′

iso-point in Fig. 3a). This suggests that it will be difficult to grasp
he exact value of �2 using just one or two general numbers, but
hat �2 should be calculated by taking the exact position of each
phere into account if one is after the full precision.

It is also important to note that, in agreement with Eq. (6),
nly one �2-value is needed to fit both the Dpart/Dm = 0.1 and the
part/Dm = 0.5-case, as well as the porous-shell and the fully porous
article case within a reasonable accuracy. This shows that the cal-
ulated �2-parameter is a true geometrical parameter, and not just

 fitting constant whose value depends on the diffusion proper-
ies of the particles. Eq. (6) follows directly from the coated-sphere
olutions of the effective medium theory [7,11].

A general trend observed in Figs. 2 and 3 is that the agreement
etween the best-fit with Eq. (3) and the computed data is not per-
ect over the entire range of considered k′′-values, as there clearly
s always a region of deviation on the order of a few % between
he computed data and the best-fit curve. To further improve the
ccuracy, one of the higher order accuracy expressions that can be
erived from the effective medium theory [21] scheme could be
sed, introducing also a four-point parameter, a five-point param-
ter, etc. It is however believed that the accuracy offered by the

resently considered second order-accurate expression, requiring
nly a three-point geometrical parameter, is more than sufficient,
s typical experimental errors are anyhow on the order of 5–10%
19,22,23].
external porosity εe = 0.26 (�), 0.386 (�) and 0.6 (�). Solid lines calculated using
Eq.  (3) with �2 as predicted in [20] for an fcc-packing. (a) Dpz/Dm = 0.5 and (b)
Dpz/Dm = 0.1.

It was also attempted to investigate why the presently consid-
ered random sphere packings deviate much more from the simple
Maxwell-based expression (Eq. (2),  see red curve) than the per-
fectly ordered packings considered in [11]. More specifically, it was
investigated whether the deviation is due to the randomness itself
or rather due to the fact that the spheres in the random packings
are actually touching (whereas they are not when considering a fcc-
and bcc-packing with the same εe = 0.385). A first indication in this
respect, hinting at the importance of the sphere-to-sphere contact,
is the position of the sc-curve in Fig. 3 (deviating most strongly from
the red reference curve). For the considered porosity of εe = 0.385,
the sc-packing corresponds to a case where the spheres are not only
touching but are actually already overlapping. To gain more insight
in this problem, a series of simulations was conducted on a random
packing of spheres (Random I, see Fig. 1a) where the contact zone
between two adjacent spheres was  replaced by an impenetrable
solid disk (see inset of Fig. 4) to block the diffusion flux through the
contact zone. As can be noted (see open triangles added to Fig. 4),
the blocking of the sphere-to-sphere contact has little or no influ-
ence in the range of very small k′′-values. For larger k′′-values on
the other hand, the presence of the blocking disks leads to a signifi-
cant reduction of �eff. These observations can readily be understood
as follows. For small values of k′′, the diffusion essentially occurs
through the interstitial void space, as the majority of the species
anyhow diffuse around the particles when the relative permeabil-

ity of the particles is small (small k′′ leads to small ˛part, see Eq. (5)).
As a consequence, the blocking of the sphere-to-sphere contact has
little or no influence on the effective diffusion rate. For large values
of k′′, the opposite occurs, as in this case the majority of the species
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iffuse through the particles, so that the sphere-to-sphere contacts
ecome very important.

The observation is in line with the shortcomings of Eq. (3)
lready discussed by Torquato [21]. According to this work, Eq.
3) is essentially suited for dispersions of particles which do not
orm large clusters, whereas it becomes less accurate in the case
f bicontinuous porous media. When the diffusive permeability of
he spheres is large, packings of touching spheres indeed behave
ather like a bicontinuous porous medium.

As a side note, practically less relevant but important to under-
tand the dynamics of Eq. (3),  Fig. 5 shows the effect of the external
orosity on �eff for the case of the ordered fcc-packing. Compar-

ng the spread of the curves with those observed in Fig. 2, it can be
learly observed that the value of the external porosity (εe) has a
uch stronger influence on the value of �eff than the microscopic

etails of the packing arrangement. The effect is more pronounced
or the high Dpz/Dm-case than for the low Dpz/Dm-case, again due to
he fact that in the latter case the �eff-curves decrease more steeply
nd are elongated in the direction of increasing k′′-values.

Whereas the presently considered packings all had an exter-
al porosity of 0.385, it can be assessed from the general effective
edium theory [21] that an increase of the porosity of about 0.015

e.g., changing ε from 0.385 to 0.40) would lead to a decrease of �2
f about 2.4%. For some typical sets of separation conditions, this
ould maximally change �eff by −1.0% (k′′ = 0) to 2.3% (k′′ = 20).

. Conclusion

The B-term contribution to the band broadening in random
acked beds of fully porous as well as porous-shell particles can be
ery closely approximated (to within 1 to 2% accuracy) over a broad
ange of retention factors and values of the porous zone diffusion
oefficient using the 2nd-order accurate effective medium theory
xpression given by Eq. (3).  The accuracy is significantly better than
hat can be obtained with the 1st-order accurate Maxwell expres-

ion (Eq. (2)). Eq. (3) contains a single geometrical tuning factor (the
hree-point parameter �2) whose value needs to be determined via
umerical calculations taking into account the microscopic details

f the packing, as was done in the present study for a number
f different examples. Since there are many different real packed
ed configurations, each of these real packed beds will have to be
escribed by a different zeta-value, at least if one would be after

[
[

[
[
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the ultimate prediction accuracy. In that case, the only way to find
the true zeta-value consists of repeating the numerical calculations
as in the present paper, but on an exact replica of the packing (if
ever this would be available). If one is satisfied with a lower accu-
racy, which is certainly allowed when k′′ is close to k′′

iso (see Eq.
(7)), the values calculated in the present study can be used as a
first estimate. Typically, the �2-parameter can be expected to lie in
the range between 0.20 and 0.30 for a random packing of touching
spheres, regardless whether the spheres are fully porous or only
have a porous shell.

Eq. (3) becomes less accurate when both the intra-particle diffu-
sion coefficient and k′′ are large, i.e., when the relative permeability
˛part is significantly larger than unity. In this case, the bicontinuous
character of the packing becomes apparent, and it is well known
from theory [21] that in this case Eq. (3) is less accurate.
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